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Executive Summary
Price forecasts suffer from the ‘muddy middle’ – a 
tendency to project middling prices while the real 
market experiences greater price extremes. As a 
response, this study introduces a novel approach 
that integrates Energy Exemplar’s PLEXOS, an 
industry-standard fundamental production cost 
model (PCM), with advanced machine learning 
(ML) techniques to improve the accuracy of 
long-term day-ahead price forecasts. This 
method addresses PCMs’ tendency to produce 
over-optimized results, especially during more 
challenging market conditions that do not align 
with actual market dynamics. Specifically, these 
models tend to underestimate prices during 
periods of market scarcity, when the supply 
of excess generation capacity is limited, and 
overestimate prices during periods of generation 
oversupply, when excess renewable energy is 
curtailed to maintain balanced grid operations. 
Enhancements to the long-term forecasts benefit 
organizations by providing them with more 
realistic future pricing environments that improve 
decisions related to planning and procurement 
responsibilities.

This analysis focuses on the California 
Independent System Operator (CAISO) grid. 
The PLEXOS model used for this study applies 
the results from the California Public Utilities 
Commission’s (CPUC) 2022 Integrated Resource 
Planning (IRP) proceeding to define the buildout 
of CAISO’s projected landscape of generators 
and storage facilities in both 2024 and 2030. 
The anticipated large increases in solar, wind, 
and battery storage are poised to significantly 
influence CAISO grid operations due to a 
transformational shift in the system’s adjusted 
net load profile. This shift will diminish the role of 

natural gas facilities in setting prices, as storage 
becomes the marginal resource with increasing 
frequency. With this transfer of roles, notable 
changes in energy pricing are likely, as bi-modal 
pricing profiles become more common. However, 
the abundance of storage and its accompanying 
operational flexibility benefits is likely to amplify 
PCMs’ propensity to over-optimize the system 
because actual grid operations can realize only 
a fraction of the projected benefits due to the 
inherent uncertainty associated with reliably 
operating the bulk electric grid. This growing 
divergence highlights the need for post-
processing adjustments to align fundamental 
price forecasts more closely with actual market 
dynamics.

The electric power industry has always grappled 
with uncertainty when conducting fundamental 
modeling exercises, and it continues to beleaguer 
analysts today. While modelers have traditionally 
used statistical techniques to mitigate the 
effects of uncertainty, this study pioneers the 
application of machine learning to enhance the 
post-processing of price forecasts. Uncertainty 
can come in one of two forms: parametric and 
structural. Parametric uncertainty arises due 
to an inability to obtain perfect information for 
all input parameters such as commodity fuel 
prices, load forecasts, and technology costs. 
This differs from structural uncertainty, which 
is the unavoidable byproduct of having to use 
simplifying assumptions in the model’s abstract 
representation of the complex real-world system 
it aims to emulate. This analysis focuses on the 
influence of structural uncertainty on PCM models 
when generating long-term day-ahead price 
forecasts.
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The revised price forecasts had a significant 
impact on the financial performance of solar, 
battery, and solar-battery hybrid projects. ES 
Figure 2 illustrates the difference in annual net 
market revenue (i.e., includes any storage charging 
costs) between the original and ML-adjusted 
PLEXOS price forecasts. Storage facilities see 
a substantial revenue increase (125-138%). This 

contrasts with stand-alone solar facilities, which 
experience a moderate decline in revenue (11-14%). 
The hybrid project demonstrates a more nuanced 
impact, with a 5% increase in 2024 that grows 
to 16% by 2030, reflecting the evolving nature of 
the grid as more renewables and storage facilities 
come online.

ES Figure 1: Comparison of 2024 and 2030 Annual Average Hourly Prices: Original PLEXOS Forecast 
(PLEXOS_i) vs. PLEXOS Forecast with Machine-Learning Adjustments (PLEXOS_ML)

To isolate the effects of structural uncertainty, 
the author first conducted a comprehensive 
backcast study in PLEXOS to simulate historical 
day-ahead market operations in CAISO for 2021 
and 2022, thereby partially normalizing for the 
effects of parametric uncertainty. The author then 
partnered with Max Kanter at GridStatus.io, an 
energy market intelligence company that provides 
system operations data, to implement a machine 
learning model based on an industry-standard 
forecasting algorithm. The ML model was trained 
on the results from the backcast study and only 
fundamental outputs from PLEXOS – such as 
adjusted net load, effective market heat rates, 
and net imports – were considered to maximize 
the robustness of this post-processing technique. 
Using 2022 as the in-sample testing period, the 

ML model was able to improve the accuracy of 
the original 2021 PLEXOS price forecast by 13%. 
Once fully calibrated, the ML model was then 
used to adjust the results from the 2024 and 2030 
PLEXOS runs by using the projected future values 
of the same variables that were used to train the 
model. The resulting differences in hourly price 
profiles between the original PLEXOS forecast, 
PLEXOS_i, and the ML-adjusted forecast, Plexos_
ML, are illustrated in ES Figure 1. Key adjustments 
included lowering midday prices and raising 
early evening prices, thereby partially offsetting 
a PCM’s tendency to produce unrealistic results 
when compared to the degree of complexity and 
uncertainty faced by grid operators during actual 
operations.
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ES Figure 2: Economic Impact of Forecast Adjustments Applied by Machine Learning Model on Candidate Projects

Although this initial study demonstrates promising 
results, additional work is required to realize the 
full potential of a hybrid forecasting platform 
that integrates fundamental modeling with 
machine learning. Key areas for improvement 
include updating the PLEXOS backcast model 
to cover 2023, exploring a variety of machine 
learning algorithms for optimal performance, and 
refining the PLEXOS forward model to reflect 
the latest trends in REC pricing and interregional 
transmission projects. Moreover, the platform’s 
forecasting capabilities can be broadened to 
include both short- and mid-term applications by 
merging ML-generated forecasts with PLEXOS 
outputs according to user-specified weightings. 
In conducting this additional work, a hybrid 
forecasting platform will be well positioned to 
provide the industry with deeper market insights 
and support more informed decision-making. 

This study illustrates the synergistic benefits 
that are available when leveraging machine 
learning techniques to refine PLEXOS’ long-term 
day-ahead price forecasts, especially during 
market scarcity and oversupply grid conditions. 
The continued adoption of renewable energy 
and storage facilities will further highlight the 
complementary strengths of both modeling 
methodologies, aiding the industry in addressing 
market dynamics.  This innovative post-processing 
technique paves the way for more sophisticated 
forecasting platforms in the future and will be 
instrumental in helping organizations navigate the 
complexities associated with the grid’s transition 
to a low-carbon future.
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In the electric power industry, understanding how 
changes to the bulk power system will affect energy 
market prices is of immense value, especially as the 
grid proceeds with its decarbonization transition. To 
forecast future market prices for electricity, analysts 
commonly use two types of models: fundamental 
and statistical. A fundamental model simulates grid 
operations at hourly or intra-hourly intervals based 
on the technical characteristics of the generator fleet 
and transmission system that is tasked with serving 
the defined load obligation. While all fundamental 
models incorporate the physical constraints of the 
grid, the degree to which this is accomplished will 
vary significantly depending on the spatiotemporal 
settings and how the problem is formulated. However, 
irrespective of its level of operational detail, all 
fundamental models calculate energy prices based 
on the shadow price of the energy balance constraint 
for each location and simulation timestep. In contrast, 
statistical methods, in essence, look at the present and 
past to forecast future conditions. They accomplish 
this by utilizing sophisticated time-series analysis tools 
to generate price forecasts by analyzing historical 
datasets. Recently, the industry has expanded 
this to include machine learning by implementing 
a methodology known as ‘supervised learning.’ 
As opposed to requiring explicit programming 
instructions, this form of machine learning involves 
a self-learning algorithm that creates abstract 
representations from historical datasets and receives 
user feedback on its performance. With respect to 
forecasting assistance, the application of machine 
learning, heretofore, has primarily been focused on 
trading and other short-term horizons.

This study explores enhancing long-term day-ahead 
energy price forecasts by integrating a fundamental 
production cost model that is rooted in mathematical 
optimization with a machine learning model that is 
based on statistical analysis principles. In combining 
these two forecasting modalities, the author looks to 
consider how the forecast can be adjusted to better 
reflect actual operating conditions, thereby providing 
additional assistance with long-term planning and 
asset valuation exercises. 

Introduction
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Fundamental models come in various forms, 
with both commercial and open-source options 
available, and provide analysts with a large 
number of input variables and constraint types 
to capture a detailed formulation of the bulk 
electric power grid. Afforded this high degree of 
flexibility in model design, modelers face a critical 
tradeoff between the degree of operational detail 
they incorporate and the required runtimes to 
successfully complete a model run. This tradeoff 
depends on a suite of factors such as user 
application, data availability, CPU processing 
power, and runtime constraints. 

First Principles Advisory (FPA) utilizes Energy 
Exemplar’s PLEXOS software program to 
generate fundamental energy price forecasts 
for the CAISO system and the broader Western 
Electricity Coordinating Council (WECC) region. 
FPA maintains its own customized WECC zonal 
database, which is cross-referenced with the 
PLEXOS databases publicly shared by the CAISO 
and the California Energy Commission (CEC). 
In addition, the database integrates information 
from the California Public Utilities Commission’s 

(CPUC) Integrated Resource Planning (IRP) cycle 
to maintain alignment with the latest assumptions 
under that proceeding.1

Figure 1 below provides a simplified geographic 
representation of FPA’s zonal model. California 
is represented by seven distinct zones that 
include both CAISO and non-CAISO regions. 
The CAISO region is defined by PGE, SCE, and 
SDGE. The non-ISO zones of California include 
LDWP, BANC, TID, IID, and IV-NG and are 
individually represented in the model along with 
the corresponding path ratings for key intrastate 
transmission corridors. Similarly, the Pacific 
Northwest (PacNW) and the Desert Southwest 
(DSW) regions are divided into approximately 
10 subregions each. Interstate transmission 
across the entire WECC footprint is modeled as 
aggregate paths, incorporating transfer ratings 
from multiple sources, including WECC’s 2022 
Path Rating Catalog. When training the machine 
learning model, as discussed in greater detail 
further below, FPA aggregates the individual 
subzones external to CAISO into broader regional 
zones (e.g., CA-NonISO, PacNW, and DSW).

Fundamental Model Description

Overview

Figure 1: Simplified Representation of First Principles 
Advisory’s WECC Zonal Model

1 https://www.cpuc.ca.gov/industries-and-topics/electrical-energy/electric-power-procurement/long-term-procurement-
planning/2022-irp-cycle-events-and-materials.
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This analysis assumes the future planned capacity 
of CAISO’s system based on the 25 MMT buildout 
scenario in the CPUC 2022 IRP cycle. This scenario 
reflects a strategic shift towards renewable 
generation and storage that comports with the 
state’s long-term decarbonization goals. The left 
side of Figure 2 illustrates the changes in total 
system capacity broken down by resource type 
for the years 2022, 2024, and 2030. Conversely, 
the right side of the figure presents the same 

information but arranges it by resource type to 
emphasize the expected changes from 2022 
to 2030 for each technology. Solar, wind, and 
storage all exhibit significant growth rates, while 
the system concurrently retires approximately 
5 GWs of natural gas-fired generation capacity. 
Additionally, it’s worth noting that the author 
assumes the postponement of the retirement of 
Diablo Canyon Nuclear Power Plant’s two units 
until 2029 and 2030.

CAISO Planned Capacity
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To illustrate the impact on system operations from 
the proposed system changes discussed in the 
previous section, the author tracks changes to 
CAISO’s Adjusted Net Load profile, which includes 
additional factors beyond wind and solar. In this 
study, Adjusted Net Load (ANL) is defined as:

ANLi=Loadi - windi - solari - 
Hydroi - non_dispatchable_thermali .

For a given ANL profile, PLEXOS must utilize a 
combination of NG resources, storage, imports/
exports, and curtailments to arrive at a balanced 
portfolio (i.e., there is no unserved or dumped 
energy in any hour).2 To aid the reader in tracking 
the evolving changes in CAISO’s ANL profile, 
Figure 3 provides a direct comparison of historical 
data from 2022 with forecasted data for 2024 and 
2030.

In comparing these ANL profiles, one can observe 
how the projected increase in wind and solar 
is expected to significantly reduce the ANL 
throughout the year. These changes reduce the 
role of natural gas-fired generation and imports 
from neighboring balancing authorities (BAs) in 
setting prices.3 Despite the addition of over 10 GW 
of new battery capacity starting in 2024, storage 
is still projected to be outpaced by solar at a rate 
of 2:1, as displayed in Figure 2. Consequently, 
for any excess power still available after fully 
satisfying the storage fleet’s demands for charging 
energy, CAISO will need to rely on either exports 
or curtailments to maintain stable grid operations. 
Should neighboring BAs be unable to absorb 
this excess power due to their own increase in 
new solar projects, CAISO will have to implement 
additional curtailments, absent more storage 
capacity coming online.

Adjusted Net Load Profiles

2 Wind and solar reflect the gross output of the solar and wind facilities pre-curtailments. Forecasted curtailments increase 
significantly in the model as one goes further out in time, going from 1,569 GWh in 2024 to 28,472 GWh in 2030. 
3 This statement primarily concerns the economic aspects of energy pricing under standard grid operations and does not 
apply to scenarios when the grid is challenged with high peak demands due to severe temperatures.

Figure 3: 2022, 2024, and 2030 Hourly Adjusted Net Load (MW) Profiles
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4 Xiufeng Yue et al. A Review of Approaches to Uncertainty Assessment in Energy System Optimization Models. 
Energy Strategy Reviews. August 2018.

It is important to acknowledge that no model - no 
matter how sophisticated - can serve as a ‘crystal 
ball’ because they are all subject to uncertainty. 
Uncertainty arises from multiple sources and 
each type imparts its own unique signature 
on the model with varying impacts to model 
fidelity. Uncertainty can be categorized as either 
structural or parametric.4 Parametric uncertainty 
is unavoidable because it arises whenever input 
parameters, such as natural gas prices or hourly 
demand profiles, can’t be populated with perfect 
information about future conditions. Conversely, 
structural uncertainty arises from the model’s 
imperfect representation of the real-world system 
it aims to emulate. Parametric uncertainty is 
relatively straightforward to understand because 
it arises whenever actual input values deviate 
from what is assumed in the model. Structural 

uncertainty, however, is more intricate, often 
resulting from oversimplified assumptions or 
partially complete model formulations. 

Conducting a backcast study can significantly 
enhance one’s understanding of the impact 
of both types of uncertainty on the model. In 
modeling the system with historical actual values 
defined for key input parameters, modelers can 
gain insights in two ways: 1) they can estimate 
what the value of perfect information is, and 
2) they can isolate the impact of structural 
uncertainty by removing the effects of parametric 
uncertainty. Thus, in a well-designed backcast 
study, any residual discrepancy between modeled 
and actual prices can be attributed to structural 
uncertainty.

Types of Model Uncertainty
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While fundamental models offer users numerous 
advantages, they are susceptible to various 
forms of structural uncertainty. The primary 
sources of structural uncertainty in FPA’s PLEXOS 
model are detailed in Table 1. Each item listed is 
categorized as either a ‘Simplifying Assumption’ 
or ‘Incomplete Information.’ For this exercise, 
Simplifying Assumption designates when the 

model incorporates a reduced formulation of the 
real-world object it is simulating, whereas items 
marked as Incomplete Information flag instances 
when the author lacked access to the information 
required for a proper model configuration. A 
brief description of each source along with an 
explanation of its contribution to the model’s 
uncertainty is also included in the table.

Isolating the Impacts of 
Structural Uncertainty

Model Item Type Description Significance

Zonal geographic 
configuration

Simplifying 
Assumption

The model uses a zonal 
configuration of WECC, 
aggregating individual busbars 
into geographic regions 

In a zonal model, all intra-zonal 
congestion is ignored and all 
generators in the location see 
the same market price 

Transport model 
for transmission 

Simplifying 
Assumption

The model uses a transport 
model for transmission 
operations. A simple line loss 
model is assumed, and path 
flows are not dependent on 
other line activity

In a DC OPF, resistance and 
reactance are defined for each 
line and path flows are dictated 
by engineering principles

Linear unit 
commitment

Simplifying 
Assumption

The model uses a linear 
commitment logic, allowing 
for the commitment of partial 
units during the optimization.

To reduce run times, the model 
does not enforce integer 
commitment, keeping the 
problem formulation as an LP 
rather than a MILP

Aggregate units Simplifying 
Assumption

The model aggregates various 
resources by geographic 
region, including solar, wind, 
geothermal, biomass, small 
hydro, and large hydro. 

This aggregation, using a single 
generation profile for regional 
resources of the same type, 
overlooks any intra-region 
variability

Simplifying 
Assumption

The model aggregates various 
resources by geographic 
region, including solar, wind, 
geothermal, biomass, small 
hydro, and large hydro. 

This aggregation, using a single 
generation profile for regional 
resources of the same type, 
overlooks any intra-region 
variability

Single start times 
(no hot, warm, 
cold)

Incomplete 
Information

The model lacks information 
on startup transition times 
so is unable to differentiate 
between hot, warm, or cold 
starts. 

Hot starts require less fuel 
and time to come online 
and become dispatchable in 
contrast to cold starts, which 
require more fuel and time.
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As highlighted in Table 1, multiple sources 
contribute to structural uncertainty in the PLEXOS 
model, complicating the already challenging task 
of forecasting energy prices. This is especially true 
under strained supply-demand conditions because 
PCMs struggle to accurately reflect scarcity 
pricing – when elevated price premiums arise due 
to a reduced availability of excess supply reserves 
amid strong demand. These market conditions 
can be triggered by numerous factors, such as 

high demand levels, simultaneous large outages 
at generation or transmission facilities, and limited 
fuel availability. Although production cost models 
are based on fundamental engineering principles, 
they typically do not include market psychology 
factors in their formulations. And as experienced 
industry professionals are already aware: 
market pricing doesn’t always align with market 
fundamentals, especially during these high-risk 
periods.

Model Item Type Description Significance

Startup / 
shutdown profiles 

Incomplete 
Information

The model does not have any 
constraints defined to limit 
operations during startup or 
shutdown

During these periods, ramp 
rates are usually constrained, 
making the unit non-
dispatchable and ineligible to 
set prices

Cycling 
constraints 

Incomplete 
Information

The model does not have 
active constraints defined 
to limit cycling activity at 
generators and storage 
facilities

The model is free to cycle 
units as long as min up/down 
constraints are honored. It’s 
not uncommon, however, for 
facilities to be subject to active 
cycling constraints that differ 
from what’s assumed in the 
model

Hedged NG 
prices vs spot 
prices

Incomplete 
Information

During the backcast run, the 
model sets the fuel price for 
all NG units equal to CAISO’s 
market power mitigation 
reference prices, as posted on 
their OASIS site. 

Actual fuel prices a generator 
incurs vary significantly 
because of multiple factors, 
including whether a hedge 
agreement is in place or not

Actual bidding 
behavior 
of market 
participants

Incomplete 
Information

The model assumes all 
generators are bid into the 
market at marginal cost

Market participants commonly 
bid submit generator offer 
curves at prices other than their 
marginal price

Table 1: Sources of Structural Uncertainty in First Principles Advisory’s WECC Regional PLEXOS Model 
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Acknowledging inherent limitations in PCMs, 
some organizations already apply post-processing 
techniques to their model results to reflect 
future pricing conditions that are more likely to 
materialize. For example, as part of the CPUC’s 
Avoided Cost Calculator (ACC) proceeding, the 
consulting firm E3 implements post-processing 
techniques to adjust energy prices from the CPUC 
staff’s PCM runs, which are done using Astrape’s 
SERVM model. As described by E3, SERVM is 
a “production simulation model representing a 
theorized and optimized view of the day-ahead 
energy market.”5 To compensate for the model’s 
tendency to produce overly optimized results, E3 
incorporates a ‘scarcity scaling function,’ which is 
a statistical technique that adjusts implied market 
heat rates and energy prices to better reflect 
actual prices when the grid operates close to its 
maximum limits.

Although it’s likely other organizations utilize 
similar post-processing techniques, the specifics 
of these methods often remain confidential 
due to the commercially sensitive nature of the 
information. Consequently, the author has not 
come across any other existing studies that 
publish their post-processing procedures. At the 
same time, the recent advancements in artificial 
intelligence have led to a growing adoption of 
machine-learning tools in multiple industries, 
including the electric power sector. This inspired 
the author to conduct a study evaluating the 
efficacy of applying machine learning as a post-
processing tool to refine price forecasts generated 
by a production cost model such as PLEXOS.

Post-Processing Production 
Cost Model Results

5 E3. 2022 Distributed Energy Resources Avoided Cost Calculator Documentation: For the California Public Utilities 
Commission. June 2022, which can be accessed here: https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-
division/documents/demand-side-management/acc-models-latest-version/2022-acc-documentation-v1a.pdf
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The primary objective of this study is to integrate PLEXOS with a machine-learning model to enhance the 
accuracy of the model’s price forecasts by yielding outputs that are more accurate across a diverse range 
of operating conditions. Figure 4 presents a high-level overview of the study methodology.

Methodology

CAISO OASIS

GridStatus.io

CAISO Plexos
XML db

CEC Plexos
XML db FPA Plexos 

XML db

LMP Error 
Adjustment 
Prediction

Forward LMP Variables (original) 
(2024,2030)

Forward LMP FX (adjusted) 
(2024, 2030)

CSY

CSY

CSY

Backcast LMP Variables 
(2021,2022)

ΕΙΑ CEC CPUC

WECC Zonal 
Model (Plexos)

Data Processing 
(excel workbook)

+

XGBoost ML 
Model 
(Jupyter 
Notebook)

Figure 4: Graphical Outline of First Principles Advisory’s Post-Processing Methodology

Data Collection and Preparation

• Populate the PLEXOS XML database for both the backcast and forward model runs.
• Utilize data from multiple sources, including California agencies (CPUC, CEC, CAISO) and the EIA.
• Gather historical actuals for the backcast model from CAISO’s OASIS site via GridStatus.io.

Model Execution

• Conduct backcast model runs in PLEXOS to generate energy price forecasts for CAISO 
system operations for calendar years 2021 and 2022.

• Conduct forward model runs in PLEXOS to generate energy price forecasts for CAISO 
system operations for calendar years 2024 and 2030.

Preparation of Training Dataset for the Machine Learning Model:

• Calculate the load-weighted CAISO DLAP (Day-Ahead Locational Marginal Price) from the 
outputs of the backcast and forward model runs.

• Prepare the training datasets for the machine-learning model.

Step
01

Step
03

Step
02

Machine Learning Calibration

• Perform in-sample testing using 2022 data to configure and calibrate the ML model.
• Perform out-of-sample testing using 2021 data to evaluate the model’s performance.

Post-Processing

• Apply post-processing adjustments to the original PLEXOS price forecasts based on the 
systemic relationships discovered in Step 4.

Step
04

Step
05

Methodological Framework for the PLEXOS-Machine Learning Hybrid Forecast Platform
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Results

Figure 5 displays the CAISO historical load-
weighted Default Load Aggregation Point 
(DLAP) prices alongside the initial results from 
the PLEXOS backcast run for 2021 and 2022. 
Comparing actual prices with modeled results 
highlights the PCM’s difficulty in mirroring system 
performance during operationally challenging 
days. Given the numerous sources of structural 
uncertainty listed Table 1, these results are not 
unexpected. Moreover, these challenges are not 
unique to PLEXOS, as all PCM models are also 
affected by these factors. 

CAISO experienced multiple periods of 
significant market stress in both 2021 and 2022, 
as demonstrated by an examination of the 
actual hourly prices throughout the year. In 2021, 
February’s Winter Storm Uri resulted in extreme 
price spikes, and the summer months underwent 
recurring bouts of constrained supply. Similarly, 
in September 2022, a late-season heatwave, 
reminiscent of the August 2020 blackouts, 
stretched CAISO’s grid to its limits. As new 
all-time peak record loads were being set with 
demand exceeding 52,000 MW, grid operators 
issued a Level 3 EEA warning on September 6th, 
and day-ahead prices soared to nearly $1,400/
MWh. In December, a surge in natural gas prices 
across CAISO and the broader WECC region 
closed out the year with elevated electricity 
prices.

Figure 6 reorganizes the same data included 
in Figure 5 to present it as a heatmap with a 
modified legend scale to zero in on more typical 
prices. While the PLEXOS model tends to slightly 
overestimate midday prices and underestimate 
afternoon-evening prices, it generally performs 
well in capturing market behavior on most 
representative days throughout the year. These 
results are indicative of a reasonably configured 
backcast model and suggest that the effects 
of structural uncertainty are greater during 
challenging operational periods and less so when 
sufficient balancing reserves are available in the 
model.

For long-term planning and procurement, 
assessing the value of a PCM model such as 
PLEXOS should be based on its ability to simulate 
unit commitment and economic dispatch 
under normal system conditions. Nonetheless, 
the ability to accurately forecast prices during 
market scarcity and oversupply is still valuable, 
especially if the frequency and magnitude of 
these types of conditions increase over time. 
While price forecast accuracy is important for 
asset valuation studies of all technology types, 
for resources such as battery storage and natural 
gas combustion turbines it is critical. This is 
because these resources are expected to be the 
marginal, price-setting unit for the majority of 
their operating hours.  Thus, the author turned to 
machine learning to explore the additional value 
that might be derived from pairing PLEXOS with 
an ML model.

Historical Actuals and Initial Plexos Output
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Figure 5: Actual Historical and PLEXOS Load-Weighted CAISO DLAP LMPs ($/MWh)

Figure 6: PLEXOS Modeled Load-Weighted CAISO DLAP LMPs ($/MWh)
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For the machine learning segment of this study, 
the author collaborated with the data service 
provider GridStatus.io.6 In addition to supporting 
the retrieval of historical data from CAISO’s 
OASIS website to populate the backcast model, 
GridStatus.io also built a machine learning model 
that utilized the ‘XGBoost’ algorithm. XGBoost, 
which stands for eXtreme Gradient Boosting, is 

recognized by NVIDIA as “the leading machine 
learning library for regression, classification, 
and ranking problems.’”7 This versatile, open-
source algorithm is designed to handle complex, 
non-linear data interactions and is equipped 
with multiple features, such as overfitting risk 
mitigation and model parameter tuning assistance.

Machine Learning Model

The ML model built by GridStatus.io offers 
multiple user-configurable settings to optimize its 
performance. The model can be trained in one of 
two ways: 

Option 1: Predict forecast error 
(i.e., LMPactual- LMPinitial fx) based on the set of 
explanatory variables provided, which then gets 
added to the initial PLEXOS forecast to arrive at 
the final value (i.e., LMPfinal fx);

Option 2: Directly predict the final forecast i.e., 
LMPfinal fx) by including the initial PLEXOS forecast 
(i.e., LMPinitial fx) as one of the explanatory variables.

Moreover, users can specify the in-sample dataset 
(training year) and the out-of-sample dataset 
(evaluation year) for model evaluation. To help 
manage the impact large statistical outliers 
have on the model, a limit can be set to cap the 
maximum hourly price correction applied to the 
original PLEXOS forecast. 

Through a mix of expert judgement and iterative 
testing, the author determined the optimal 
settings that minimized fitting error. Option 1 
was selected as the preferred training method. 
Furthermore, the model was trained using 2022 
data and evaluated against 2021 data. During 
the training exercise, the author observed the 
model displayed heightened sensitivity to extreme 
outliers in the training data, which manifested 

downstream as overfitting problems and 
adversely affected model performance. To address 
this, historical prices were capped at $500/MWh 
to strike a balance between minimizing overfitting 
while still capturing an appropriate amount of 
market scarcity conditions. Additionally, the 
maximum correction parameter was set at $250/
MWh to ensure the ML-adjusted forecast remained 
within a reasonable range of the original PLEXOS 
forecast. Further investigation is needed to 
optimize the trade-off between capturing extreme 
market risk premiums and minimizing overfitting 
risk.

Specifics regarding the selection of the training 
variables are undisclosed due to confidentiality. 
However, it’s worth mentioning that only variables 
fundamentally tied to the underlying changes in 
the system - such as adjusted net load, system 
curtailments, and effective market heat rates – 
were selected. Because the grid is expected to 
undergo a significant transformation over the 
next decade, the model deliberately avoids using 
any parameters not directly tied to a fundamental 
system operating characteristic. For example, 
calendar-based parameters such as month, day, 
or hour were not eligible as training variables. 
The strategy used to select the variables that 
ultimately trained the ML model was intentionally 
designed to accommodate the significant changes 
in CAISO’s projected adjusted net load profile, as 
previously discussed.

Machine Learning Calibration

6 https://www.gridstatus.io/
7 https://www.nvidia.com/en-us/glossary/xgboost/
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This section discusses the results from the out-of-
sample testing of the ML model. The forecast from 
the original PLEXOS backcast study is denoted as 
PLEXOS_i, and the forecast modified by the ML 
model is denoted as Plexos_ML. 

Figure 7 illustrates the 2021 month-hour average 
profiles for actuals, PLEXOS_i, and Plexos_ML. 

Key observations include:

• The original PLEXOS forecast generally aligns 
with the actuals, mirroring the overall trend for 
most hours across each month. This indicates 
the backcast model provides a reasonably 
accurate depiction of the CAISO system when 
key input parameters are accurately defined.

• Both PLEXOS_i and Plexos_ML struggled to 
capture the severe market stress experienced 
in February 2021 due to Winter Storm Uri.

• The ML model’s performance during peak 

afternoon and early evening hours in summer 
months was inconsistent in that it reduced 
systemic under-forecasting biases in some 
months (e.g., July) but over-corrected in 
others (e.g., August).

• The ML model effectively accounted for 
PLEXOS’ tendency to under forecast system 
curtailments of excess solar energy and 
adjusted mid-day prices downward in non-
summer months in response.

Applying the ML revisions to the original 2021 
PLEXOS forecast achieved a 13% reduction in 
the root mean squared error (RMSE). At first 
glance, this improvement might appear modest, 
but it’s important to note that the backcast study 
already captured a significant level of market 
representativeness, as illustrated in the figure. A 
feature importance analysis identified adjusted 
net load and gas prices in CAISO and the desert 
southwest as the three primary variables with the 
greatest impact on the ML model’s performance. 

Machine Learning Testing Results

7 Based on CAISO Production and Curtailment data, which can be accessed here: https://www.caiso.com/informed/
Pages/ManagingOversupply.aspx.

Figure 7: 2021 Month-Hour Average Profiles of Actual, PLEXOS_i, and Plexos_ML Forecasts
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Once calibrated, the ML model processed the 
2024 and 2030 price forecasts from PLEXOS 
by correcting for the same systemic biases it 
identified in the PCM model during its training. 
Because the ML model was trained only on key 
fundamental parameters such as adjusted net 
load, effective market heat rates, and system 
curtailments, its adjustments can remain relevant 
despite the extensive expansion of renewable and 
storage resources that is anticipated in the CPUC’s 
2022 IRP. Figure 8 and Figure 9 display the 2024 
and 2030 month-hour average profiles for the 

original and revised price forecasts, respectively. 
In both years, there is a general tendency for the 
ML model to reduce prices in the middle of the 
day and increase them in the late afternoon and 
early evening periods. The magnitude of these 
adjustments varies by month. Notably, however, 
the 2030 forecast reveals stronger upward price 
adjustments during nighttime hours in multiple 
months. The author attributes this to changes in 
natural gas prices and increased curtailments of 
out-of-state wind due to limited transfer capacity 
on the existing transmission system.

Forecast Adjustments for Future Periods

Figure 8: 2024 Month-Hour Average Profiles for initial PLEXOS Forecast (PLEXOS_i) and ML-Adjusted 
Forecast (Plexos_ML)
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Figure 9: 2030 Month-Hour Average Profiles for initial PLEXOS Forecast (PLEXOS_i) and ML-Adjusted Forecast 
(Plexos_ML)

Given the CPUC’s IRP buildout calls for over 10 
GW of added storage by 2030, the model gains 
significant operational flexibility when optimizing 
its decisions. Unfortunately, this increase in 
storage also carries the risk of results that are 
over-optimized because of the PCM’s simplified 
problem formulation, which omits key factors 
like load and VER forecast errors, voltage and 
frequency regulation, and market bidding and 
scheduling activities. With ~14 GW of storage 
assumed to be online by 2024, batteries assume 
a greater role in setting prices, and CAISO 
begins to experience bi-modal pricing patterns 

in most months outside of the summer peak 
season. Notwithstanding that price forecasts 
are dependent on multiple variables that include 
both changes to the load forecast in addition 
to an evolving supply stack, PLEXOS exhibits 
a proclivity to generate relatively stable and 
subdued prices over the planning horizon. But as 
demonstrated in Figures 8 and 9, the adjustments 
applied by the ML model can help correct for 
this overfitting, thereby allowing for long-term 
price forecasts that align more closely with more 
realistic operational conditions.



21

Figure 10 presents an x-y scatter plot for 2024 and 
2030, with PLEXOS_i on the x-axis and Plexos_ML 
on the y-axis. The plot shows that the ML model 
generally adjusts prices downward when the 
PLEXOS forecast is below ~$25/MWh and adjusts 
them upwards when pricing is above ~$50/MWh. 
Most upward adjustments are confined to $25/
MWh or less. But as the PLEXOS model forecasts 
higher prices, the magnitude of the ML model’s 
upward pricing adjustments also increases. The 
wider distribution of upward pricing adjustments 
compared to the downward revisions highlights 

the complex nature of price formation processes 
as system supply conditions begin to tighten. 
It’s important to note that in both calendar years 
PLEXOS never forecast negative day-ahead prices. 
This is reflective of the modeling assumption that 
all solar and wind units are bid into the market at 
$0/MWh. However, in the event a market premium 
for renewable energy credits (RECs) is defined 
in PLEXOS, negative prices will manifest in the 
model to reflect the opportunity costs associated 
with these environmental attributes.8

Figure 10: X-Y Scatter Plot of 2024 and 2030 Forecasts

8 Under this assumption, if RECs are valued at $15/MWh and PLEXOS is actively curtailing a solar or wind facility, the 
price for that hour will be -$15/MWh.
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8 In this study, annual net market revenue is defined to include all costs associated with charging the storage device but 
excludes any revenue associated with capacity payments or the provision of ancillary services.

To evaluate the financial impact of the revised 
price forecasts, the author conducted an asset 
valuation study on multiple configurations of 
storage and solar resources, assuming both 
a stand-alone and paired configuration. Four 
distinct projects were analyzed: 1) a 50 MW, 
4-hour stand-alone storage facility; 2) a 50 
MW, 8-hour stand-alone storage; 3) a 75 MW 
stand-alone solar facility; and 4) a hybrid project 
combining a 75 MW solar plant with a 50 MW, 
4-hour battery. Figure 11 illustrates the differences 
in annual net market revenue when switching from 
the original PLEXOS forecast (PLEXOS_i) to the 
machine-learning adjusted forecast (Plexos_ML).9

As illustrated in the figure, the ML model’s 
adjustments significantly impact each project’s 

financial performance differently. With annual net 
market revenues more than doubling in both 2024 
and 2030, stand-alone storage – both 4-hour and 
8-hour duration projects - notably benefit. Thanks 
to the lower midday charging costs that are then 
coupled with higher discharge prices later in the 
day, annual net revenues increase by 125-138%. In 
contrast, the ML model’s daytime price reductions 
result in a 17% decrease in energy market revenue 
for stand-alone solar in 2024, which then narrows 
to 11% decrease in 2030. The solar-storage hybrid 
project initially experiences a modest revenue 
gain of 5% in 2024 but later sees a 16% increase 
in revenue by 2030. Future studies will explore 
the impact on other resource types like wind and 
geothermal.

Impacts to Valuation for 
Solar and Storage Assets

Figure 11: Economic Impact of Forecast Adjustments Applied by Machine Learning Model on Candidate Projects
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Limitations
While this initial study is informative in revealing 
the benefits of integrating PLEXOS with machine 
learning-based techniques for price forecasting, it 
also highlights several limitations. Price forecasting 
is inherently complex, and all forecasting methods 
– both fundamental and machine-learning - have 
their limitations. As demonstrated in this study, 
fundamental models such as PLEXOS can be 
challenged in dealing with structural uncertainty, 
increasing the risk of the model generating 
outputs that aren’t reflective of actual day-ahead 
scheduling operations. Conversely, with machine 
learning, there’s a risk that the model may anchor 
around false or tenuous signatures in the historical 
dataset that are less relevant in future market 
conditions, resulting in the assignment of an 

inaccurate bias to the original price forecast. The 
difficulty of detecting and correcting for this error 
is compounded by the opaque nature of these 
machine learning models, which complicates the 
understanding of the specific correlations and 
patterns they employ.

Given the symbiotic nature of the relationship 
between the PCM and ML models, maximum 
benefit is achieved only when both models are 
performing well. A poor configuration in one 
model can severely limit the performance of the 
other. Limitations in both the PLEXOS and ML 
model have been identified, and the following 
areas warrant additional investigation:

Enhance the PLEXOS backcast model by incorporating a richer historical dataset 
that includes calendar year 2023. Furthermore, additional detailed information on 
transmission derates, generator availability, and public bidding and scheduling data can 
be defined in the model to further reduce the impacts of parametric uncertainty. As the 
accuracy of the backcast study improves, the machine learning model will train on a 
higher quality dataset.

Expand the machine learning analysis by exploring additional explanatory variables 
or assessing alternative algorithms. Should specific algorithms exhibit superior 
performance under certain conditions, an ensemble approach (i.e., employing a 
combination of algorithms) could be implemented to maximize the available benefits.

Improve the treatment of curtailments in PLEXOS by adjusting how the model accounts 
for any opportunity costs associated with RPS REC credits. In addition, update the 
model’s transmission topology to account for new interregional transmission lines that 
are expected to come online in the next few years and will import out-of-state power 
into California (e.g., TransWest Express and SunZia Transmission Project).

01

03

02

Although notable limitations have been identified 
in this initial proof-of-concept, the findings 
are promising and lay the groundwork for 
future enhancements to this hybrid forecasting 
platform. Moreover, by conducting asset valuation 
studies on a broader range of project types - 
including wind, geothermal, and various storage 
technologies beyond 4-hr and 8-hr Li-Ion batteries 
– the platform’s utility can be greatly expanded to 
a broader pool of decision makers. 

Exploring the integration of forecasts from a 
fundamental model with those from a machine 
learning model presents a promising area for 
further research. This approach could mitigate the 

inherent limitations of each forecasting method by 
leveraging their respective strengths. For example, 
statistical models typically excel in short-term 
forecasting, while fundamental models are more 
accurate over the long term. In combining the 
two forecasting methods, an organization can 
establish a more comprehensive approach that 
spans across multiple time horizons. Additionally, 
machine learning could aid in calculating basis 
premiums between regional trading hubs and 
individual nodes, facilitating the transformation 
of zonal PCM forecasts into nodal forecasts. 
This could considerably reduce computational 
demands and costs, although further investigation 
is required to validate these hypotheses

Next Steps & Additional Applications
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Conclusion

Acknowledgements

In this white paper, the author evaluated the 
potential to enhance long-term day-ahead price 
forecasts in CAISO by coupling PLEXOS with 
a machine learning model built off an industry 
standard algorithm. After using PLEXOS to 
conduct a detailed backcast study of CAISO 
operations for 2021 and 2022, the author 
partnered with GridStatus.io to assess the ML 
model’s ability to correct for a PCM’s tendency 
to over-optimize system operations, particularly 
during market scarcity and oversupply conditions. 
After training the ML model on the results from 
the 2021 backcast study, the author was able to 
reduce the RMSE of the original 2022 PLEXOS 
results by 13%. 

After calibration, the ML model adjusted the 
PLEXOS outputs from 2024 and 2030 to assess 
the impacts on pricing after accounting for the 
new resources that are expected in the CPUC’s 
2022 IRP. This includes over 20 GW of new 
solar, nearly 11 GW of incremental storage, and 
almost 10 GW of additional wind. The primary 
adjustments consisted of lowering midday prices 
and raising late afternoon and early evening 
prices. Prices in 2030 also saw additional upward 
revisions from the ML model during the late 
evening and early morning hours in multiple 
months. Changes in commodity fuel prices along 
with additional curtailments of out-of-state wind 
generation due to congestion are believed to be 
the primary drivers behind the revisions.

The asset valuation exercise demonstrated that 
the ML price adjustments have a substantial 
impact on the financial performance of the 

projects with effects varying based on the 
technology type and project configuration. Stand-
alone storage facilities experienced a net revenue 
increase of 125-138%, while stand-alone solar 
saw reductions of 11-14%. A solar-storage hybrid 
project experienced moderate revenue gains of 
5% in 2024 that increased to 16% in 2030.

While promising in addressing the inherent 
complexities and uncertainties of price 
forecasting, this study acknowledges the need 
for improvements in both the fundamental 
and machine learning models to fully realize 
their synergistic potential. Key areas for further 
investigation include enriching the PLEXOS 
backcast model with more recent and detailed 
data, exploring diverse machine learning 
algorithms, and refining model performance on 
curtailments and transmission updates. Potential 
future enhancements to broaden the scope of this 
hybrid forecasting platform include going beyond 
just long-term forecasting applications to include 
short- and mid-term horizons as well. However, 
further exploration is required to fully validate this 
expanded functionality. 

This study illustrates the capacity of machine 
learning to augment PLEXOS’ day-ahead price 
forecasts, showcasing the combined strength 
of these technologies in addressing traditional 
model limitations and advancing energy price 
forecasting. As the sector moves towards a more 
sustainable future, such innovations are crucial for 
adeptly managing the evolving dynamics of the 
energy landscape.

The author would like to acknowledge Keith Parks for his editorial review and the helpful comments and 
suggestions he provided.


